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Branch-height distribution in diffusion-limited deposition
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We analyze diffusion-limited aggregation (DLA) with a branchless needle model. We modify the
growth rules of our needles by assigning them a fractal dimension of D, =~ 1.7, the fractal dimension
of DLA. We then construct a mean-field theory of the evolution of the number of needles having
particular heights. Our model accounts for the correlations within a needle. We argue that DLA
is an isotropic fractal with a scaling density profile and that the fractal dimension of the individual
branches should be the same as the dynamical dimension of the aggregate.

PACS number(s): 68.70+w, 81.10.Dn, 81.15.Lm

I. INTRODUCTION

The diffusion-limited aggregation [1] model (DLA) has
so far resisted any analytic solution. Attempts have been
made to grasp the essential physics of the problem by
breaking it into parts. We can imagine DLA to be char-
acterized by two processes: creation of branches through
tip splitting and the death of branches through compe-
tition. Tip splitting can be understood locally, but com-
petition, a nonlocal phenomenon, is less well understood.

Several groups have tried to consider the effects of com-
petition alone through needle models, where growth is
constrained to occur only at the moving tips. Derrida
and Hakim have studied the original DLA geometry of
needles growing radially from a point seed through con-
formal maps [2]. Meakin, Cates, and Rossi studied nee-
dles growing vertically from a hyperplane seed through
simulation and mean-field theories [3-5]. We present here
a model which by treating competition alone, has been
simplified enough to allow solution and yet still makes
successful predictions about DLA.

In the commonly used electrostatic analogy for diffu-
sion limited growth [1], the average mass flux is replaced
by an electric field which develops near the deposit, which
is replaced by a grounded conductor. The points of a thin
grounded needle would develop an infinite electric field
near the point, i.e., an infinite mass flux. References [3-
5] deal with this difficulty by assigning the tip of a needle
a constant radius of curvature a. The growth rate would
then be

h~at. (1)

However, the branches in a simulation of diffusion-

limited deposition [6] do not have constant radius of cur-

vature; larger branches have a larger radius of curvature

than smaller branches. In addition, since the aggregates

are fractal, not compact, there is no reason to expect (1)
to apply.

One of the limitations of those needle models in which
a is constant is that they predict exponentially increas-
ing growth velocities because as needles grow, they die
through competition. Each living needle captures ever
more flux and grows faster [4]. Kassner notes that it
ought to destroy the slow growth hypothesis [7]. A the-
ory without the slow growth hypothesis would lose the
link between DLA and many natural phenomena such as

4

dielectric breakdown and viscous fingering. By making a
a function of needle height, we can slow down the large
needles and keep the whole aggregate growing smoothly.

II. CONSTRUCTION OF THE MODEL

Diffusion-limited deposition (DLD) [6] differs from
DLA in that the seed is a horizontal line and particles are
released from above. DLD represents the limit in DL A of
a small slice near the surface of a large aggregate. A DLD
aggregate is a collection of “trees” of different heights.
Since each of these trees is longer than it is wide, we can
model it as a needle of the same height, but zero width.
We assume that the effect of a tree on other trees through
shielding is roughly the same as that of a needle of the
same height. We will show that this simplification does
not alter the results of the simulation too much. In addi-
tion, equating needles with actual DLD branches solves
the two problems facing needle models mentioned above,
the singularity at the tip of the needles and the predicted
exponential growth of DLD. We assign each needle the
growth rate per unit flux of the branch that it represents.

We can find the growth rate per unit flux by using the
fractal nature of the aggregate. If a needle has a fractal
dimension Dj, and its mass increases at a certain flux
rate &m,/dt, its height h ~ m!/P¢ should increase as

Oh/dt ~ (dm/dt)/hPr 1. (2)

Now, instead of counting flux at the tip only, we count

flux all along the length of the branch. We assume that

the tip radius will adjust itself to whatever is needed to
maintain Eq. (2).

Our method of needle modeling also has applications
to dendritic crystals [8] which grow under DLA-like con-
ditions, but for which surface tension anisotropy cre-
ates a different morphology. In such dendrites, a main
branch with an approximately parabolic tip develops side
branches. Because of anisotropy, these side branches
grow at some fixed angle to the main branch and surface
tension keeps these side branches compact. We model
side branches as needles. When a random walker lands
at the tip of the main branch, the main branch grows
and creates a new side branch. If ordinary needles (4,3]
are used, the exponentially growing side branches quickly
overwhelm the main branch. If we assign the needles a
dimension greater than one, then the side branches are
better behaved as shown in Fig 1.
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FIG. 1. The tip region of a simulated needle model den-
drite. The image has been reflected across the x axis. Walkers
are released from a circle and random walk to the aggregate.
If they land at the tip of the main branch (along the z axis)
the tip grows, creating a new side branch. If they land on a
side branch, the side branch grows as a needle of dimension 2
[9]. Compare this image with Fig. 1 in Ref. [8].

I1I. SIMULATION

In what follows, = represents the direction parallel to
the substrate, y the height above the substrate, t the time
and also the mass of the aggregate since particles are in-
troduced at a constant rate, h(zx) the height of the branch
whose root is at (z,0), n(y,t) is the number of branches
with h > y at time ¢, and u(z,y) is the probability of
finding a walker at (z,y).

The model was simulated in 141 dimensions. We place
a seed 1000 pixels wide at y = 0. A particle is released
with uniform probability at y = hmnayx, slightly above the
highest point on the aggregate. It then random walks on
lattice to the aggregate by calculating the distance to the
aggregate and then jumping uniformly to the perimeter
of a circle whose radius is that distance. If the parti-
cle jumps above Amax, it is brought back to hAmax with
a Green’s-function jump [10]. Once the particle reaches
the aggregate, it is absorbed and a new particle is re-
leased. When the particle lands anywhere on a needle,
it increments a counter assigned to that needle. If that
counter reaches h(x)P*~! then the needle grows one unit
and the counter is reset to zero.

As can be seen from Fig. 2, the model successfully re-
produces the branch density profile of DLD. The branch
density profiles of both DLD and our needle model are
scaling functions of time which fit n(y,t) = y~*f(%
with a = 0.7, v = 1.1.

Our result & = 0.7 implies that DLD is actually self-
affine, not self-similar. « describes the way branch height
scales with branch number. Since branch number scales
linearly with the width of an aggregate, o also describes
the way height scales with width. y scales as z®. This
difference in scaling between the vertical and horizontal
directions of DLD, or between the radial and azimuthal
directions of DLA, has been noted in the past [11].

Some recent papers, however, have claimed that this
anisotropy is the result of a slow crossover [12]. If this is
true, in the limit of large aggregate size, DLA becomes
an isotropic fractal with a scaling form and a fractal di-
mension of ~ 1.7.

Mass is injected into the system at infinity at a con-
stant rate. Therefore, t ~ m. Since a typical length scale
y ~ t7, we have 1/ = D4y — 1 where Dy is the dynami-
cal dimension of the aggregate as a whole. We therefore
expect the large aggregate limit exponents to be

a=1, y~14. (3)
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A theory should yield these long-time exponents, not the
short-time exponents presented above.

Although this crossover is documented, its causes are
not yet known. We therefore cannot directly prove that
our model will mimic DLA in the long-time regime. How-
ever, the fact that the two give such similar results in the
short-time regime suggests that our initial assumption is
sound, namely, that a complex long object like a DLA
branch will effect the diffusion field at other branches in
the same way as a needle of the same height.
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FIG. 2. Branch density profiles of (a) diffusion-limited de-
position and a needle simulation. Scaling of branch density
profiles in (b) diffusion-limited deposition and (c) a needle
simulation.
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IV. MEAN-FIELD THEORY

Following Cates [4], we can write down a one-
dimensional mean-field theory to describe n(y,t) and
u(y,t). We choose units such that various constants are
unity. We start with a diffusion equation for u with some
trap density meg. The relationship between n and neg
will be discussed shortly:

*u/8y® — uneq = du/ot. (4)

A mean-field expression such as this assumes that there
are no significant correlations in the z direction. We as-
sume that correlations between branches, e.g., that large
branches tend to stunt neighboring branches, are unim-
portant. However, a strong correlation which we cannot
ignore is that all points in the same branch have the same
z position. The tip of a branch will more effectively shield
the points below it when all the points on the branch are
lined up instead of smeared out in the mean-field manner
(as shown in Fig. 3).

The trap density meg is a term which describes the
way real branches behave in a mean-field theory. Due to
shielding, we posit that each branch has some effective
trap density strongest toward the tip and decreasing as
one moves away from the tip. Thus

Nest (y) = /00 dh(dn/B6h)E(h,y/h). (5)

Here, On/0h is the tip density at A.

We make the slow growth hypothesis that the diffusion
field has time to relax after each growth step, and we
replace the diffusion field with a Laplacian field,

du/dt = 0. (6)

For the growth rule, we increase the mass of a branch
when a walker meets it, and that branch grows at its tip
at a rate determined by Eq. (2),

h
(9n/8t)(h) = h1=D» / dy(On /O Yu(v)E(h, u/h). 1)

0o

Boundary conditions [4] state that all walkers are ab-
sorbed before they reach the seed plane at y = 0 and
that walkers are injected into the system at y — oo at a
constant rate,

u(0,t) =0, lim Ou/dy = const. (8)
y—o0
On the basis of the simulation, we assume scaling so-

(a) a needle in two dimensions (b) as seen by mean-field theory
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FIG. 3. (a) is a typical needle. (b) shows how this needle
is seen by a mean-field theory. z positions no longer matter,
so the needle behaves in a smeared-out fashion.
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FIG. 4. The system used to calculate €.
lutions of the form
n(y,t) =y~ *f(y/t"),
(9)

u(y, t) = yﬁg(y/t’y)i £(h’ 9) = huk(e)

Here, 6 is the dimensionless variable y/h. By (8), 8 = 1.

We can solve for £ by examining a system which (a)
can be solved exactly, (b) satisfies the same boundary
conditions as the problem at hand, and (c) involves nee-
dles. One such system is an ensemble of needles, equally
spaced, attached to a plate (Fig. 4). Let £ be the dis-
tance between needles and h be the height of the needles
and () represent the average over . Then we can rewrite
Eq. (4) for the situation as

&(h,y/h) = £(8%u/By?)/(u(y))- (10)

In the limit [/h — oo, each spike has a negligible effect
on its neighbors and can be treated as an isolated spike.
A single spike on a plate can be solved using a conformal

‘map. The complex map z = (w? — h?)!/2 takes the real

axis $(w) = O to the real axis plus the spike (0,7h). After
some algebra, we find that & scales as h~! or v = —1.

We now substitute the scaling form (9) into Egs. (4)—
(8) and derive the remaining scaling exponents,

a=2+v=1, f=1 y=(Dpy—-v—-2)""=14. (11)

V. DISCUSSION

For both our small DLD simulations and the needle
simulation, we got a = 0.7. In keeping with the formulas
of (11), we expect the correlation exponent v to be —1.3
if it is applicable. v = —1.3 implies y = (D —v —2)"! =
1.1, also matching simulation. Thus a and v are linked
through v.

We see from Eqs. (3) and (11) that our mean-field
results agree with the large-aggregate results. We also
tested the hypothesis that the discrepancy between the
simulation results and the mean-field results may be due
to correlations between branches as opposed to correla-
tions between points in the same branch. We can remove
these correlations by scrambling the branches after ev-
ery collision. We retain the distribution of n branches
of height y, but assign each branch a random z location.
When this system is simulated, we recover the mean-field
exponents which are also the large-aggregate exponents.
This result suggests that these interbranch correlations
may be mechanism which holds off the large-aggregate
regime.

As we earlier decided, v = 1/(Dgq — 1) where Dy is the
dynamical dimension of the aggregate as a whole. We
also see from (11) that v = 1/(Dp — 1) where Dy is the
fractal dimension of an individual branch which implies
that Dy = Dyg.

VI. CONCLUSION

We have attempted to redefine the way in which
needles are perceived as theoretical stand-ins for DLA
branches. In our treatment, the growth rate of a needle
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is not just the flux of the tip but is also related to the
nonconstant radius of curvature of the tip. This rate can
be found using the fractal dimension of the aggregate.
Real needles have absorbing sides. When sides are ab-
sorbing, the correlations forced by the needle geometry
cannot be ignored. These can be examined by analyzing
the scaling in the case of a single needle.

In constructing a needle mean-field theory, we are able
to create a theory which concentrates on the number of
branches instead of mass. Such a theory allows us to
make comments on anisotropy as well as the fractal di-
mension and the width of the interface. Our theory is in
agreement with measurements on large DLA aggregates,
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that DLA is an isotropic fractal, with a scaling profile,
and the fractal dimension of the branches is the same as
the dynamical dimension of the aggregate.
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